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Front aggregation in multiarmed excitation vortices
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Using the Belousov-Zhabotinsky reaction, we study the pinning of multiarmed spiral waves to nonexcitable
obstacles. With increasing obstacle size, the individual arms switch from a repulsive to an attractive state. This
transition yields densely aggregated spiral arms and is caused by anomalous dispersion. A kinematic model
reproduces the measurements quantitatively and identifies the transition as a supercritical pitchfork bifurcation.
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Rotating spiral waves are a striking example for spa-
tiotemporal self-organization in excitable reaction-diffusion
media [1]. These dissipative patterns are known to exist in a
broad variety of systems such as catalytic surfaces, single
cells, aggregating microorganisms, certain regions of the
central nervous systems, and the mammalian heart [2].
Among the most widely studied examples is the chemical
Belousov-Zhabotinsky (BZ) reaction [3]. This reaction is
also an ideal model for the systematic investigation of exci-
tation waves in media with heterogeneities that are, in vari-
ous forms, intrinsic to all living matter.

Spiral waves are profoundly affected by the introduction
of nonexcitable heterogeneities close to the spiral tip. For
obstacles larger than spiral core, one observes simple pinning
of the tip to the obstacle’s boundary [4]. Smaller obstacles,
however, cause complex trajectories and, in the case of pe-
riodic obstacle arrays, give rise to quantized spectra of vari-
ous orbits [5]. The latter situation also introduces an effective
anisotropy that affects the overall symmetry of the global
wave pattern.

In addition, simple pinning to obstacles alters the rotation
period of the wave structure. The period is governed by the
dispersion relation c(\), where ¢ and N denote the propaga-
tion velocity of infinite wave trains and the corresponding
interpulse distance (i.e., wavelength), respectively. In many
chemical and biological systems, the velocity increases
monotonically with increasing wavelengths and saturates at a
maximal speed ¢, [6]. However, certain media have anoma-
lous dispersion relations that involve a single overshoot,
damped oscillations, bistability, or band gaps [7].

Nonmonotonic dispersion relations can be found in excit-
able systems in which the rest state is a stable focus [8].
Accordingly, an excited medium reapproaches the steady
state through damped oscillations that can create a nonmono-
tonic inhibition profile in the wake of an excitation pulse. In
turn, the speed of a trailing pulse shows a nonmonotonic
dependence on the distance to its predecessor. Anomalous
dispersion can be caused also by the interaction of multiple
inhibitors as in the case of wave propagation on Pt(100)
surfaces during the catalytic reduction of NO with CO [9].

A similar mechanism seems to be responsible for anoma-
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lous dispersion in the 1,4-cyclohexanedione Belousov-
Zhabotinsky (CHDBZ) reaction. This particular system
shows a variety of intriguing phenomena that affect the dy-
namics of wave trains and patterns. Examples include accel-
erating waves, cascade-like reorganizations of pulses in wave
trains, pulse annihilation in front-to-back collisions, and the
formation of bound pulse multiplets [10]. In this paper, we
describe the impact of anomalous dispersion on multiarmed
spiral waves in the CHDBZ reaction. To control the rotation
period of these patterns, experiments are carried out in peri-
odic obstacle arrays with different obstacle sizes.

Obstacle arrays are produced from polyester casting resin
using soft lithography [11]. This material has several advan-
tages over poly(dimethylsiloxane) (PDMS) -based reactors
where wave propagation can be affected by a flux of an
inhibitory species (Br,) from the aqueous CHDBZ phase into
the PDMS matrix [12]. The first stages of the device fabri-
cation have been described in Refs. [11,12] and yield a sili-
con wafer that bears the positive surface relief of the desired
reactor. We then produce a negative PDMS copy of the relief
using silicon elastomer kits (Fisher, Sylgard 184). After cur-
ing, the sample is silanized and the procedure is repeated,
now with PDMS being poured on PDMS. Using the latter
PDMS master, we create the final device from a casting resin
and a methyl ethyl ketone peroxide (MEKP) liquid catalyst
(TAP Plastics Inc.). The patterned area of the polyester mold
is trimmed and holes are drilled to serve as solution reser-
voirs. The mold is then rinsed with acetone and pressed
against a glass surface to achieve thorough bonding. All de-
vices have square obstacles arranged on square lattices. The
resulting channels have a constant width of 200 um and a
height of 80 um.

The devices are filled with the ferroin-catalyzed BZ reac-
tion using 1,4-cyclohexanedione as the organic substrate
[13]. Our experiments employ the following initial concen-
trations (in mol/L): [H,SO,]=2.0, [CHD]=0.11, [NaBrO;]
=0.07, [ferroin]=5.0 X 1073. Wave patterns are detected at
488 nm using a charge-coupled-device camera. Video signals
are captured with a low-noise frame grabber and commercial
software.

To create multiarmed spirals, we exploit the photosensi-
tivity of the reaction medium [13]. We center a circular mask
(diameter 5 mm) over the reactor that is populated by spon-
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FIG. 1. (Color online) (a) Difference images of a pinned three-
armed spiral wave. Spiral tips rotate counter clockwise around the
central obstacle. The obstacle width is 0.75 mm and the image area
is (4.8X4.8) mm? The time elapsed between the two frames is
10 s. (b) Corresponding phase field. The wave fronts are in a repul-
sive state.

halogen lamp for about 20 s. This perturbation erases all
waves except for those located underneath the mask. Along
the edge of the unperturbed region, the remaining wave seg-
ments begin to rotate around the closest obstacles, thus, cre-
ating pinned multiarmed spiral waves.

This procedure yields excitation patterns similar to those
shown Fig. 1(a). The individual pulses appear as white dots
propagating along a network of dark channels. The detailed
dynamics of the pattern are obscured by the strong fragmen-
tation and the large number of front segments. To overcome
this problem, we compute a position-dependent phase. First,
we measure the local excitation period T (here 20 s). From a
sequence of images spanning 7, the time of excitation 7 is
analyzed for each pixel site and linearly scaled to values
between 0 and 27r. We then extract the 7 values along simple
polygons connecting every pixel to an arbitrary reference site
and remove phase jumps between 0 and 27 as well as 27
and 4. Figure 1(b) shows the resulting phase field for the
same experiment. The image reveals a vortex structure with
three arms (blue, red, yellow) which are pinned to a single
obstacle marked with a white “x.” The pattern is affected by
a different wave train in the lower left-hand corner where the
phase is ill defined. Most importantly, we find that the three-
armed vortex in Figs. 1(a) and 1(b) has equal distances be-
tween the individual tips, thus, indicating repulsion between
the different wave arms. Additional measurements show that
it takes less than 2 min to establish this stable state from
initially asymmetric conditions produced by the externally
controlled nucleation process.

The most surprising result of our study is that the repul-

PHYSICAL REVIEW E 72, 046109 (2005)

time t(min)

space s(mm)

FIG. 2. (a) Difference image of a pinned three-armed spiral with
attractive pulse interaction. Tips rotate counter clockwise around
the central obstacle. The obstacle width is 1.5 mm. (b) Time-space
plot of the same experiment illustrating the tip rotation around the
central obstacle.

sion of spiral arms can give way to attraction, if the size of
the obstacle is increased. The difference image in Fig. 2(a)
shows a typical example for this anomalous size effect. Here,
a counter-clockwise rotating, three-armed vortex is pinned to
the obstacle located at the center of the field of view. In
contrast to Fig. 1, the spiral arms are separated by two short
and one very large distance, thus, forming dense pulse pack-
ets. The leading pulse segments are brighter than the closely
trailing ones indicating larger changes in intensity. This in-
crease in pulse amplitude is also observed in pseudo-one-
dimensional CHDBZ media, but its origin is unknown. For
the same experiment, Fig. 2(b) shows a time-space plot ob-
tained from a square path around the central obstacle. These
data unfolds the tip dynamics of the vortex and yields two
short (N\;,=0.78 mm) and one large distance (A;
=4.33 mm). The plot also establishes that the aggregated
vortex is in a stationary, stable state as the pulse velocities
are identical.

The size dependence of the transition from a repulsive to
an attractive vortex state is illustrated in Fig. 3(a). The inset
shows the wavelengths A, , measured for two-armed spirals
as a function of obstacle perimeter U. For small obstacles,
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FIG. 3. (a) Bifurcation diagram for pinned n-armed spiral
waves. The wavelengths are plotted in terms of the obstacle perim-
eter U (inset, n=2) and the largest wavelength \, (main figure, n
=2,3). Solid and dashed lines are the stable and unstable fixed
points obtained from kinematic analysis, respectively. (b) Disper-
sion data measured from pulse stacking in a pseudo-one-
dimensional system (dots) and pinned spiral waves (circles). The
solid and dashed lines are the corresponding least-squares fits using
the function c¢(\)=cy+v(A—N\g)exp(—k\) with the latter one yield-
ing (¢, v,\g,k)=(2.95 mm/min,3.81 s7,0.73 mm,0.75 mm™").

we find \;=N\,=U/2, thus, indicating front repulsion. For
larger perimeters, the spiral arms aggregate and yield one
small and one large wavelength. The bifurcation perimeter is
approximately 4.1 mm and increases with increasing num-
bers of spiral arms n (not shown). To combine data from
n-armed spirals with different values of n, we plot the mea-
sured wavelengths N;(i=1,...,n) versus the largest wave-
length X, of the given set [see main part of Fig. 3(a)]. The
plot reveals a bifurcation between attractive and repulsive
dynamics at a \,, value slightly above 2 mm.

The observed transition results from an overshoot
anomaly of the underlying, one-dimensional dispersion rela-
tion. Figure 3(b) shows the pulse speed ¢ as a function of
interpulse distance \. Data are measured from dynamic pulse
stacking experiments in a pseudo-one-dimensional reaction
system (small dots) as well as from pinned spiral waves
(open circles). The two data sets differ slightly along the
anomalous branch, which could be due to the nonstationary
nature of the stacking pulses. The curves correspond to least-
squares fits using an arbitrary but simple function. In the
following, these fits are used to describe the vortex bifurca-
tion in terms of a simple kinematic model.
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FIG. 4. Schematic drawing illustrating front aggregation in
terms of a kinematic analysis. Fixed points for two different perim-
eters (U< U') are marked as circles (stable) and star (unstable).

To understand the observed bifurcation, we focus on the
motion of the spiral tips since they are the pacemaker of the
global pattern. Disregarding minor, curvature-induced veloc-
ity changes at the corners of the obstacle, we can discuss a
pinned, n-armed spiral as a group of n particles traveling in a
one-dimensional medium with periodic boundaries. The
length of this circular path equals the perimeter U of the
obstacle. We also assume that the velocity c; of the ith par-
ticle depends only on the distance to its predecessor i+1. In
addition, the sum of all interpulse distances must equal U,
since we assume infinitely thin, particle-like wave pulses.
Consequently, the tip motion is described by the kinematic
equations

ds,»

E=C(si+l_si)7 (1)
ds n—1
d_tn=C U_E(SHI_Si) ) ()

i=1

where s;(1<i<n-1) and s, are the n different pulse posi-
tions. For simplicity of notation, the latter equations assume
Si41>>s; without the limitation of generality. Using the fit of
the underlying dispersion relation [dashed line in Fig. 3(b)],
these equations allow us to compute the stable stationary
state(s) of the multiarmed vortex for different values of U.
The corresponding results are shown in Fig. 3(a) as solid
lines. They are in very good agreement with the experimental
data, which indicates that front aggregation in vortices is
dominated by the dispersion relation of the medium while
curvature effects are negligible.

In the following, we limit our discussion to the case of
two-armed spirals, but more complex structures can be ana-
lyzed in a similar fashion [9]. Stationary states must obey
c(\)=c(U-\), where \ is one of the two interpulse dis-
tances. The latter equation yields the trivial fixed point \*
=U/2, which corresponds to the repulsive vortex state. For
monotonic dispersion relations, this is the only stationary
solution. For anomalous dispersion, however, other solutions
can exist as in our case, where two additional fixed points
appear for sufficiently large U values (see Fig. 4). This bi-
furcation occurs if U/2>\,,,,, where \,,,, is the wavelength
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for which the dispersion curve has maximal pulse speed. It is
accompanied by a change in stability because a fixed point
\" is stable only if ¢'(U~N\)+ ¢’ (\)|y_,+>0. Hence, the tran-
sition from a repulsive to an aggregated state is a supercriti-
cal pitchfork bifurcation.

In conclusion, we presented an experimental study of
multiarmed spirals in an excitable reaction-diffusion me-
dium. The vortices are pinned to heterogeneities and undergo
a condensation-like rearrangement of their individual arms if
the system size is expanded above a critical threshold. We
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suggest that similar phenomena can occur in biological sys-
tems for which anomalous dispersion is known to exist [14].
Consequently, spiral-arm aggregation should affect intracel-
lular concentration waves where certain organelles might act
as nonexcitable anchors. Similarly, it could be observable in
cell colonies and tissues with locally compromised regions.
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